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1. Abstract

This auto ethnographical practice-based research interrogates the role of the
digital luthier and music composer, in a post-human landscape. The accompanying
audio compositions and code explore the intersection between anthropo-centric and
cyborg-centric music making paradigms. The literature review sets out the aesthetic
stance of the researcher, highlights key post-human and actor network theories theory
and their application in computer music systems design, performance and composition
tools. and establishes a morphological distributed agency framework that is tested

through the creative outcomes presented here. This practice-based research presents The


https://kilshaw.duckdns.org/DIHEDRAL_KILLER_CUTZ/
https://kilshaw.duckdns.org/THE_DATA_SELFIE
https://kilshaw.duckdns.org/prosodic_development/indexc.html
https://github.com/kilshaw/The_Data_Selfie

Scratch Engine, a real-time computer musical instrument in which structural transformation
is governed by the action of the dihedral group De. Rather than sequencing musical events
or parameter values, the system sequences permutations of functional parameter roles,
enabling continuous reconfiguration of instrumental structure while preserving material
identity. Six numerical values form a fixed state vector that is treated as immutable

material; all musical variation arises exclusively through permutation.

The instrument embeds the twelve symmetries of a regular hexagon—six rotations
and six reflections—as its complete transformational vocabulary. These permutations act
upon six persistent parameter containers corresponding to stable musical or signal-
processing roles. Structural change is thus realised as reassignment of values to roles rather
than alteration of the values themselves, foregrounding relational transformation over

parametric variation.

The system operates autonomously once configured, generating new state vectors at fixed
formal intervals and applying dihedral permutations at user-defined temporal resolutions.
Permutation is enacted continuously in real time, producing fluid, uninterrupted melodic
and rhythmic output characterised by coherence through conservation rather than
repetition. The underlying group action is rendered through both a geometric hexagonal
interface and an isomorphic matrix representation, enabling perceptual legibility, algebraic

rigor, and direct computational translation within the Pure Data environment.

Conceptually, the work reconfigures principles of total serialism as a live,
performative process. Serial organisation is preserved at the level of structural relations

rather than pitch-class rows or fixed matrices, aligning the system with transformational



music theory while extending it into an autonomous, time-based musical instrument. By
making group action audible and operational in real time, the Scratch Engine demonstrates
how formal mathematical symmetry can function as a primary compositional agent within

contemporary music systems.

2. Introduction

Contemporary computer music practice increasingly operates at the intersection of
algorithmic autonomy, real-time systems, and posthuman performance paradigms. (Collins
et al., 2003; Hayles, 1999; Roads, 2015). As musical instruments evolve from passive
sound-producing tools into adaptive computational agents, the locus of compositional
agency shifts away from the human performer alone and towards distributed systems in
which structure emerges through algorithmic process, constraint, and machine temporality
(Rowe, 1993; Roads, 1996; Agostini & Ghisi, 2013). This research situates itself within this
evolving landscape by presenting The Scratch Engine, a dihedral permutation sequencer that
reconceptualises musical control as the live transformation of structural roles rather than

the sequencing of musical events.

The Scratch Engine is not designed as a responsive or improvisatory system in the
traditional interactive sense. Instead, it belongs to a class of autonomous technological
performance systems (ATPS) in which formal behaviour unfolds independently once initial
conditions and constraints are defined (Rowe, 1993; Zicarelli, 2002). Performer interaction is
deliberately minimal and strategic, limited to configuring temporal resolution, formal

duration, and transformational pathways. After activation, the system generates, permutes,



and reconfigures its own internal structures in real time, producing continuous musical

output without requiring moment-to-moment human intervention.

This design choice aligns the instrument with posthuman and cyborg-centric
perspectives on musical agency, in which creativity is understood as emerging from the
coupling of human intention, formal systems, and machine execution rather than from
human gesture alone (Haraway, 1991; Hayles, 1999; Braidotti, 2013). The performer
functions less as an expressive controller and more as a system designer, curator of
constraints, or instigator of processes. Musical form is not enacted through direct
manipulation, but through the activation of a formal ecology governed by symmetry,

permutation, and temporal iteration.

By embedding the full action of the dihedral group D¢ directly into the control
architecture of the instrument, this work positions mathematical structure not as an
abstract compositional aid, but as an active, audible force. In doing so, it contributes to
ongoing discourse in algorithmic composition, transformational music theory, and
posthuman performance studies by demonstrating how formal systems can operate as
autonomous musical agents while remaining perceptually legible and musically expressive

(Lewin, 1987; Xenakis, 1971).



3 Literature review:

3.1 Creative and Musical Aesthetic Stance

Music is and has always been defined and bound by the compositional and
performance tools (instruments) from which the music is born (Montague, 2017). This
inseparable relationship between tools and musical output that all luthiers and instrument
designers observe has transcended genre(Pinch et al, 2002), social standing(Blades 1992),
geography(Théberge, 1997) and era, but evolves and is shaped by the emergent materials,
mechanical affordances and technologies of the latter. Magnusson (2021) frames this
through the concept of ethno-organology, arguing that instruments shape musical ideas,
performance practices, and even genres, and that technological innovation has consistently
driven musical evolution—from bone flutes to the pianoforte, from amplification systems to
contemporary digital and tangible musical interfaces, where programming paradigms not
only provide new affordances for musicians, composers and audiences, but particularly for
digital luthier ( the designers and programmers). From the earliest documented pipe
instruments referenced by Homer (c 800 BC), through the radical post-industrial revolution
sonic experiments of the Italian Futurists in the early 20th century (Marinetti et al, 1909), to
the digital age of contemporary computer music where the aesthetics of music production
are increasingly shaped by software environments, plugins, and algorithmic composition, the
evolution of musical aesthetics has consistently mirrored the development of new

technologies.

The Italian Futurists, particularly Luigi Russolo and Filippo Tommaso Marinetti, offer a
compelling historical precedent for this research. Their invention of the Intonarumori

mechanical noise-generating devices, marked a deliberate rupture with traditional musical



and aesthetic values and audience acceptances (Bucknell, 2020) The Futurists provocatively
called the Intonarumori instrument, “il scoppiatore” (Serafin, 2012) This is a term usually
used in Italian when referring to a bomb “going off” or war “breaking out”. It is to be seen as
deliberately provocative and aesthetically challenging. Italian Futurists, and specifically their
experiments in musical instrument design and performance instruction, benchmarks a useful
reference for the start of this research project, not least because it demarcates a time in
history where, empowered by the industrial revolution, electricity began to expand the
timbral possibilities with these earliest of electronic musical instruments. From the 1913
publication of Luigi Russolo’s “Art of Noise” manifesto, the Futurists gave birth to an
exuberant acceleration of audio-focused aesthetic design, production, system-based
compositional protocols. This moment, which Donin and Stiegler describe as “the
mechanical turn of musical sensitivity” (Steigler, 1998), serves as a conceptual and historical
anchor for this research. It represents a pivotal shift in the ontology of music-making from a
historical anthropocentric model to a new materialism(7a), thus entangling the agency of
humans, machines, animals and environments. In this way it can be recognised as a
precursor to a posthuman approach to music and sound making, proto-posthuman, where
the machine becomes not merely a tool but a co-creator agent of musical production. The
Futurists’ embracing of mechanical and later electronic instruments foreshadowed the
emergence of contemporary posthuman digital lutherie, where composers and instrument
designers engage with software, sensors, and algorithms to craft new sonic vocabularies.
The creative practice in this research is situated within this lineage, yet it is consciously
distanced from the political ideologies historically associated with early Futurism. Instead, it
draws inspiration from the movement’s radical aesthetic ambitions and its commitment to

technological experimentation. Like Russolo’s scoppiatore, the work presented in this



practice is driven by a similar aesthetic desire to rupture conventional sound worlds, by
adopting a neo futurist approach to my own compositions and music making, through the

exploration the expressive potential of emergent technologies.

The development of electronic instruments in the 20th century from Leon
Theremin’s early theremin (1909) and the introduction of Schaeffer’s theorisation of the
sound object (1948), to Chowning’s complex spectra synthesis techniques (1973), further
expanded the timbral and structural possibilities of music, performance, performance
technique and the ability to record and capture sound. For example, these innovations
enabled composers Cage (1939), Tenney (1961), and Varese (1929) to move beyond the
constraints of hither-to traditional instrumentation. Varése’s lonisation (1929-31), for
instance, anticipates an electronic sound world through its use of percussion and non-
pitched metallic sound sources, signalling a shift toward a more abstract and technologically
mediated sonic language, through the design and process of new sound making
phenomena. In this context, the role of the composer increasingly resembles that of a digital
luthier—a hybrid practitioner who designs, programs, and performs with bespoke computer
music systems. The creative process becomes both technically systematic and aesthetically
exploratory, driven by a desire to generate novel sonic materials and to engage with the
expressive affordances of contemporary media. The compositions that accompany this
research are thus framed by a neo-Futurist aesthetic, one that embraces speed, intensity,
and technological fluency, while remaining critically aware of its historical and cultural

implications.

3.2 Posthuman Agency: Anthropocentric and Cyborg-centric models in music creation.



The rise of interactive and algorithmic music systems has catalysed a shift away from
anthropocentric models of musical creation, prompting a rethinking of authorship, agency,
and the role of process and systems in the composition and production of computer music.
Music Machine Learning Generative Adversarial Networks (Simon, Huang 2019) and systems
that are Artificially Intelligent (Nathanielle 2025), demonstrate how algorithms can not only
participate in, but can fully assume the creative act. Collins and d'Escrivan (2007) explore
these tensions within the wider field of electronic and computer music, noting that
algorithmic systems function as both compositional partners and instruments, depending on
the extent of human control and intervention. They argue that such collaborations
necessitate a reframing of the authorial role as procedural and collaborative rather than
expressive and centralised. These developments align strongly with post-humanist theory,
which critiques the privileging of human subjectivity and instead emphasises distributed

agency across human and non-human actors.

On how we became posthuman, Hayles (1992) argues that the traditional conception
of the human as a discrete, autonomous subject is increasingly over ridden by a model in
which the human is understood as an information-processing system. The human is a
collaborator within a broader network of cognitive and computational agents. Hayles’
reconfiguring of creative agency has had profound implications for computer music creation,
particularly in the context of algorithmic composition, Al-assisted creativity, and interactive
systems. Hayles endorses Actor Network Theory where the act of composing music is no
longer the exclusive domain of a singular human intellect, the sole genius originator, but

becomes a distributed process, shared across human and machine actors where creator



becomes curator, from author to orchestrator of and participator in generative processes. In

Actor Network Theory there is a symmetrical credit ascribed to all actors. (Latour et al, 1987)

Haraway’s Cyborg Manifesto (1991) proposes the figure of the cyborg as a metaphor
for hybrid identities that surpass and exceed binary oppositions such as human and
machine. The cyborg model encourages composers to embrace hybridity—not only in terms
of media and tools but also in the blending of human intuition with machine-generated
processes. In a musical context, this is manifest in George Lewis’s Voyager, (1985-1987)
where the computer acts as an autonomous improviser. The system is engaged in real-time
decision-making, responding to human input not as a reactive tool but as a co-creative
partner. Lewis asserts that “the computer system is not an instrument and therefore cannot
be controlled by a performer. Rather, the system is a multi-instrumental player with its own
instrument,” (Bailey, 1993) leveraging its capacity to engage in real-time improvisation as an

independent musical agent rather than a passive medium.

Karlheinz Essl’s Realtime Composition Library RTC-lib (2022) and Lexicon Sonate
(2020) MAX and Puredata Library which enables real-time algorithmic composition
methodologies, is evidence that compositional intent can be encoded into algorithms,
delegated to generative systems, or emerge through real-time interaction with autonomous
software agents. These systems operate according to their own logics, constraints, and
temporalities, and can often produce results that exceed or diverge from the composer’s

original expectations.

Holly Herndon’s PROTO (2019) features an Al vocal agent named Spawn, trained on
Herndon’s voice and those of her collaborators. Rather than using Al as a tool for replication,

Herndon treats Spawn as a co-performer, engaging in real-time vocal improvisation and



composition. By decoupling the voice from the individual, she repositions it as

a computational artifact. The voice that emerges is neither fully human nor fully artificial—it
is posthuman, existing in a liminal space between the two, resulting in a seemingly
posthuman vocal identity. The voice is reimagined as a collaborative, computational, and
semi-anthropocentric phenomenon. David Cope’s intent for Experiments in Musical
Intelligence (EMI) was initially conceived as a response to a compositional creative block,
using it as a kind of provocateur to stimulate his own compositional thinking. (Garcia, 2015)
In this complex interplay of agency, EMI was not intended to replace the composer, but

to challenge, inspire, and interact with them. In the case of both Cope and Henderson, the
machine is not simply executing instructions but actively shaping the musical output. The
composer’s role shifts from that of a sole creator to that of a system designer, curator, or
collaborator, responsible for framing the conditions under which musical material is

generated and interpreted.

Hayles’s framework also invites a reconsideration of embodiment in music creation. If
the composer is no longer a bounded individual but part of a cybernetic package, then
musical expression becomes a product of interfacing bodies and systems—human, digital,
and hybrid. This is particularly evident in the musical live coding works of “Algorave”
founders Collins and Maclean (2014), networked media performances of Pamela-Z (2003),
and sensor and haptic based live performances of Kirby (2017) , where the margins between
performer, instrument, and environment are fluid and co-constitutive. Ultimately, Hayles’s
post-humanist lens encourages a move away from anthropocentric narratives of genius and
authorship, toward a more ecological and relational understanding of creativity. In this way,
music is not simply made by humans using machines, but emerges from the blend of human

cognition, machine computation, and the affordances of technological systems.



Technological and computational and theoretical advancements in the latter half of
last century, (Groupe Recherche Musicale, Paris, Elekronische studios Cologne and Bell USA)
became charted as significant research centres for the composition of electronic and
electroacoustic music, and by association software/ hardware designers, technicians and
synthesis modellers and digital instrument researchers. Similarly, and more recently, current
academic and research institutions can be seen in current creative software tool making,
(Ircam suite, GrmTools , Beast-Tools, Integralive,, and the AJAXSTUDIO). What they all share
in common is the construction and manipulations of mathematical relationships between
expressive sonic parameters. Hamilton confirms that when designing an instrument,
whether following a parallel design or maintaining two independent approaches, “the
physical and logical separation of the input device from the sound production necessitates
multiple ways of processing and mapping the information coming from the input device.
Mapping becomes therefore an essential element in designing new instruments.” (Jorda,
2002) Miller Puckette’s Pure-Data [31] programming and mapping environment is a
fundamental cornerstone of the creative work presented in this research, allowing for the
acquisition, parsing, processing, through processing, function, manipulation and synthesis of
any data representation, whilst at the same time keeping the artist acutely aware of the
fully-duplex, simultaneous handshaking between the roles of researcher, software designer,
composer, improviser, performer and mathematician. At a recent Tone.js Machine Learning
& Music series webinar [32], | asked workshop leader Tero Parviainen which of these roles
does he see himself and his practice as being, and whether he is primarily focused on one or
a simultaneous agencies operating between these roles. Parviainen approach is user-centric
affirming that he wanted the environments he designed to be intuitive as possible to the

user, not necessarily the listener. His practice is driven and informed by the software



coding, it’s logic, functionality, and interestingly, his desire to hide that coding process from
the intended listener/ user. Grond and Hermann (2012) makes quite an opposite observation
in that if there exists enough nuance in the process and means by which the information is
to be sonified, the sonic output itself can serve as a pathway into a particular sonic aesthetic
representation of the world, especially if the map (or data model) it is linked to is manifestly
exposed to contextualise the sonification or audification. This also means multiple data
audifications, using different learning, listening and processing models can sit together as
different doorways into a plurality of aesthetic representations of the world, in complex

synthesis patterns.

Development is of course the whole raison d’etre of the open-source movement and
perhaps explains why most source code is packaged as libraries, where those connections
are left to the artist to discover and uncover how musical that sonic experience will be.
Parviainen encourages developers to “explore the full potential of the system”. Conversely,
producer and performer Deadmau5, on his electronic dance music performances, actively
avoids the exploration of his system’s real-time compositional potential, rejecting the
instrument’s virtuosity in favour of playback of precomposed tracks (Parkinson, Bell 2015).
But to fulfil the exploration of the full potential of a computer music system, at least to my
aesthetic desires, should require some attention to liveliness, its ability to exist and react in

real-time, with or without the input of a human performer or interactor.

Essl’s approach is more environment-centric. On Improvisation with computers
(Essl,2002), his conceptual framework is the design of a system that allows a synthesis of
compositional environments and performance paradigms, a hybrid workspace where the

conventional demarcations between composition, performance, and instrument are



effectively hybridised. He emphasises the efficacy of a real-time interactive system that
provides immediate auditory feedback, thereby enabling spontaneous and continuous sonic
manipulation, drawing similarities with George Lewis’s work. Whilst Essl and Lewis may have
different opinions on the function of the instrument as a passive conduit for human
expression, they both advocate for systems that dissolve the boundaries between
composition and performance, enabling environments where improvisation and structure

coexist fluidly.

Recent developments in computational music further complicate the distinction
between anthropocentric authorship and distributed agency. Contemporary Al-based music
systems, including deep learning and transformer-based architectures, demonstrate an
increasing capacity to generate stylistically coherent musical material with minimal human
intervention (Huang et al., 2021; Expert Systems with Applications, 2022). However, these
systems remain fundamentally conditioned by the statistical properties and aesthetic biases
embedded within their training datasets, which overwhelmingly reflect Western tonal and
rhythmic conventions. As such, their outputs often reinscribe anthropocentric musical

grammars, even as they appear autonomous.

Several scholars have argued that this form of algorithmic creativity constitutes a
weak or delegated autonomy, in which agency is distributed but not structurally redefined
(Browne, 2025). In these systems, the composer or system designer retains primary
authorship by curating datasets, selecting models, and authorising outputs. The machine
functions as an extrapolative agent rather than a formally constrained one. This distinction
is significant when contrasted with systems in which autonomy arises not from probabilistic

learning but from explicitly defined transformational grammars.



From a posthuman perspective, this raises critical questions concerning transparency,
interpretability, and perceptual legibility. Recent work in structured generative music argues
that systems grounded in formal constraint, rather than data-driven inference, offer a
clearer redistribution of agency, as their internal operations remain intelligible and
analytically traceable (Ni-Hahn et al., 2025). In such systems, autonomy is not emergent
from opacity but is enacted through rule-based transformation, aligning more closely with

post-serial and transformational compositional lineages.

Open-source machine learning frameworks for music generation, Google’s Magenta
(2016), Huann, Engell et al’s Music Transformer models(2021), and Tegridy’s Los Angeles
Composer Library (2022), are built upon extensive corpora of human-generated musical
data. These datasets, comprising thousands of hours of Western tonal music, encode deeply
anthropocentric assumptions about musical structure, style, and expression. As such, the
models trained on them inevitably reflect and re-evoke these human-centred musical
grammars, even though they generate novel outputs. However, the creative potential of
these systems lies not merely in their capacity to replicate existing styles, but in their ability
to navigate latent musical spaces—regions of possibility that interpolate between known
musical forms and speculative, emergent ones. In this sense, music machine learning
systems can be seen as cyborg-centric collaborators, producing outputs that are
simultaneously grounded in human musical tradition and suggestive of posthuman or hybrid
aesthetics. Despite this generative capacity, the composer or system user remains the
principal agent in the creative process. It is the human who curates, selects, refines, and

ultimately authorises the musical material proposed by the machine.



This morphological dynamic positions the composer in the network, not as a passive
recipient of machine output, but as an active interlocutor in a dialogic process of co-
creation. The composer curator may well get lost in rejoicing in an algorithmic sublime or a
scientific narcissism (Cole, 2020), but ultimately the consumption of the final audio creation
returns to the anthropocentricity of the human ear. From this literature review, one
persistent challenge in algorithmic approaches remains the issue of listenability. Whilst
recent systems are capable of producing harmonically and stylistically coherent material
(Pachet 2016) , the music they generate can often lack emotional depth, expressive nuance,
and a convincing narrative arc and flow. Born’s application of Actor Network Theory (2005)
to music making notes that listenability emerges not from the algorithm alone, but from the
broader network of actors, including humans, datasets, software tools, instruments,
performance layers, and audiences, that together shape the musical outcome. Born shows
that when these actors are weakly connected or absent (for example, when expressive
performance is omitted or when audiences approach Al music with bias), outputs are
perceived as sterile; conversely, when the network is richer and better aligned, algorithmic

works become more engaging and listenable.

Models, particularly those based on statistical or machine learning approaches,
operate effectively at a local level, producing plausible note sequences or textures but
struggle with maintaining large-scale musical form (Huang, 2018, Brion et al, 2019). in their
survey of deep learning techniques for music generation show that deep learning outputs in
melodic contours and stylistic transfers can feel either directionless or overly formulaic.
Moreover, the paper explicitly flags “lack of performance expressivity” and “difficulty in
long-term structure” as critical gaps in deep-learning music systems. For example, systems

like AIVA (46)and Los Angeles Composer(46a) demonstrate remarkable stylistic imitation, yet



their outputs are often critiqued for lacking the dynamic contour and expressive phrasing
characteristic of human compositions (Colton et al 2020, Dhariwal et al 2019.) The issue is
compounded by the absence of performance nuance in many algorithmic software systems.
While note-level data can be generated convincingly, aspects such as timing flexibility,
articulation, and expressive phrasing are frequently underdeveloped, unless a human-in-the-
loop integration is applied. Yamaha’s Dear Glenn project addresses this by incorporating
performance modelling trained on recordings of Glenn Gould, enabling real-time musical
interaction with expressive fidelity (Yamaha Corporation, 2019). Similarly, Google’s Magenta
project, particularly the Performance RNN and Music Transformer models, have advanced
the ability to translate and represent temporal dynamics and long-range dependencies in
piano performance data yet, even these more advanced systems seem to prioritise technical
fluency over emotional or perceptual engagement, leading, at least to me, to listener

fatigue due to either excessive complexity or lack of variation.

As algorithmic composition becomes increasingly central to my contemporary
compositional practice, the question is no longer simply whether the designed system can
produce musical material that is useful to me as a composer, but bears a more nuanced
requirement of whether it can sustain musical interest, display virtuosity and artistic intent.
For this researcher, this presents both a challenge and an opportunity: to design systems
that are not only generative, but autonomous fluid and musically compelling on an
anthropocentric level. The creative work undertaken in this research explores
this collaborative relationship between algorithmic systems and human authorship and the
challenges of creating fluidity in composition and the tension of owning an aesthetic control.
The resultant musical outputs of this practice resonate with Schlomvic’s (2024) challenge of

the notion of the single artist voice, resulting, for me at least, in a liberating expansion of my



stylistic approaches in a multiplicity of musical and aesthetic compositional voices. These
systems are not merely instruments but co-creative hybrid and non-human agents, capable
of proposing fluid musical ideas that challenge me, the composer, to respond, adapt, apply

and reimagine their own creative role.

3.3 Autonomous and Formal Systems in Algorithmic and Post-Serial Practice

While machine-learning-based music systems dominate much contemporary
discourse, an alternative lineage of algorithmic composition prioritises formal autonomy
through mathematical structure rather than statistical inference. This approach extends
from post-war serialism and transformational theory into contemporary computational
practice, where symmetry, permutation, and group-theoretic operations function as

generative grammars rather than analytical abstractions.

Recent research has revisited the application of dihedral and cyclic symmetry groups
within computational music systems, demonstrating how formal constraint can generate
musically coherent variation without reliance on stylistic imitation (Chen, 2024; Luo, 2024).
These systems embed transformational operations directly into the generative architecture,
allowing musical structure to unfold through closed sets of rotations, reflections, and
permutations. Importantly, such approaches align with Lewin’s emphasis on
transformations as primary musical objects, shifting focus away from the musical surface
toward the relations governing change. This formalist trajectory resonates strongly with
post-serial aesthetics, particularly total serialism’s extension of ordered relations beyond
pitch to encompass rhythm, articulation, and dynamics. However, whereas historical total

serialist practices often relied on pre-compositional planning or score-based realisation,



contemporary computational systems enable these transformations to operate
continuously and in real time. As Browne (2025) argues, autonomy in such systems emerges
not from complexity alone but from the disciplined application of constraint, enabling
perceptually intelligible musical behaviour without continuous human intervention. Within
this context, the Scratch Engine aligns with a growing body of research advocating structural
autonomy over adaptive intelligence. Its use of dihedral symmetry as a control grammar
positions it alongside contemporary formal systems while distinguishing it from Al-driven
generative models. Rather than learning musical style, the system navigates a finite
transformational space, producing fluid musical output through the traversal of
mathematically defined relationships. This approach frames transformation itself as an
audible musical phenomenon, reactivating serialist principles within a live, performative

computational framework.

4. Conceptual Framework: Structural Control, ATPS, and Posthuman Agency

The Scratch Engine departs from traditional sequencing paradigms, which typically
operate by generating discrete musical events within temporal grids (Roads, 1996; Taube,
2009). In such paradigms, musical meaning emerges primarily through the temporal
succession of notes, gestures, or control events, with higher-level structure inferred
retrospectively. By contrast, the Scratch Engine adopts a fundamentally different
ontological stance: it prioritises the transformation of structural relationships over the
sequencing of individual events. Instead, it sequences transformations of control
structure: six numerical values are assigned to six persistent parameter containers,

corresponding to functional roles such as pitch, note length, harmonicity, pitch multiplier,



resonant filtering, and distortion. Once generated, these values remain invariant, and all

musical change arises exclusively through permutation.

In operational mode, the system autonomously generates new vectors at fixed formal
intervals (e.g., every sixteen bars) and traverses permutation space at user-defined
resolutions (bar, half-bar, quarter-bar). This autonomy distinguishes the Scratch Engine from
interactive systems predicated on continuous performer feedback (Rowe, 1993), embedding
agency within the system’s architecture rather than in moment-to-moment control. Musical
meaning arises from structural traversal and transformation, not from reactive gesture.
From a posthuman perspective, the system exemplifies a cyborgic coupling of human
intention and machine autonomy (Haraway, 1991; Hayles, 1999; Braidotti, 2013). The
performer configures constraints and selects temporal parameters, but the system itself
executes transformations that are perceptually legible, formally coherent, and musically
consequential. Structural continuity, symmetry, and relational invariance become central
musical phenomena, experienced through autonomous, algorithmically driven motion

rather than direct human manipulation.

4.1 Bridging Lewinian and Posthuman Theory

Lewin’s transformational framework conceptualises musical structure as the
relational action of groups upon musical objects, privileging continuity and relational
meaning over static material (Lewin, 1987). Lewin extended a more parametric application
of Schoenberg’s Serialist technique, namely Group Theory Musical Transformation (GTMT)
that extended the techniques to model musical transformative relationships. This relational

ontology finds a theoretical complement in posthuman perspectives, which de-center the



human subject and distribute agency across networks of human and non-human actors
(Haraway, 1991; Hayles, 1999; Braidotti, 2013). The Scratch Engine operationalises this
convergence: dihedral permutations act autonomously upon numerical vectors, producing
structural transformations that are perceptually intelligible and musically expressive, yet
exceed direct human control. In doing so, the instrument embodies a cyborgic realisation of
Lewinian transformational space, where musical agency emerges through the interaction of

formal group action, algorithmic execution, and temporal unfolding.

4.2 Structural Transformation over Event Sequencing

Traditional sequencing paradigms in electronic and computer music prioritise the
temporal ordering of discrete musical events: pitches, rhythms, dynamics, or parameter
changes. Even in algorithmic systems, this frequently manifests as the generation or
selection of events within a predefined temporal grid (Roads, 1996; Taube, 2009). The
Scratch Engine departs from this paradigm by operating at a deeper structural level. Rather

than sequencing events, it sequences transformations of control structure.

At any given moment, the instrument is defined by a fixed six-element numerical
vector. These values are not treated as musical materials in themselves, but as abstract data
capable of acquiring meaning only through their assignment to functional roles. Crucially,
once generated, this vector remains invariant for a fixed formal duration. No stochastic
processes, interpolations, or gradual parameter changes act upon the values themselves. All
musical change arises exclusively through permutation. This approach evidences structural
reassignment rather than parametric variation, aligning the system with compositional

approaches that privilege invariance, constraint, and formal coherence over surface-level



change (Lewin, 1987; Morris, 1998). Musical motion is produced not by changing what the

material is, but by changing what it does.

4.3 Autonomous Technological Performance Systems (ATPS)

The Scratch Engine functions as an autonomous technological performance system
in which structural behaviour unfolds independently of continuous human input. In
performance mode, the system generates a new six-element vector at fixed formal intervals
(e.g., every sixteen bars) and subjects this vector to dihedral permutation at user-defined
temporal resolutions (bar, half-bar, quarter-bar, etc.). The performer does not select
individual permutations in real time; instead, the system traverses permutation space
algorithmically, cycling through the twelve symmetries of the dihedral group. This autonomy
reflects Rowe’s distinction between interactive systems that respond to performer input
and systems that assert their own internal musical logic over time (Rowe, 1993). Agency is
embedded in the design of the system itself: in the choice of group structure, the restriction
to a closed transformational vocabulary, and the temporal constraints governing
permutation. Once activated, the system behaves consistently, predictably, and rigorously,
producing musical output that is coherent precisely because it is constrained (Zicarelli,
2002). Such behaviour aligns with ATPS frameworks in which musical meaning arises from
the interaction between formal systems and time, rather than from reactive performer—

system dialogue. The Scratch Engine does not “listen” to the performer or adapt



expressively; instead, it asserts its own internal logic, inviting the performer and listener to

engage with the unfolding of stylistic structure as an autonomous process.

4.4 Posthuman and Cyborg-Centric Perspectives

From a posthuman perspective, the Scratch Engine can be understood as a cyborg
instrument in which human and machine agency are inseparably intertwined. The composer
does not directly articulate musical gestures; rather, they configure a formal system whose
behaviour exceeds immediate human control. Musical authorship is distributed across
mathematical structures, algorithmic processes, temporal frameworks, and the act of
listening itself (Haraway, 1991; Hayles, 1999). This conception resonates with posthuman
theories that challenge anthropocentric models of creativity by recognising non-human
actors—algorithms, formal systems, machines as active participants in artistic production
(Braidotti, 2013). The instrument does not merely execute human intention; it produces
outcomes that are shaped by its own internal constraints and affordances. The resulting
musical phrases and lead lines are not fully predictable, yet never truly arbitrary. By
rendering permutation audible as motion, and symmetry perceptible as musical continuity,
the Scratch Engine reframes formalism as an embodied, temporal experience. Serial
organisation is encountered not as an abstract matrix or score-based procedure, but as a
continuous sonic process in which structure is perceived through transformation and

conservation (Babbitt, 1965; Lewin, 1987).

4.5 Transformational Theory and Posthuman Agency: A Synthesis

Lewin’s conception of musical structure as the action of groups upon musical objects

provides a crucial theoretical bridge between formalist music theory and posthuman models



of creative agency (Lewin, 1987). In Lewin’s framework, musical meaning arises not from
static entities, but from the relationships and transformations that connect them. This
relational ontology resonates strongly with posthuman theory, which similarly decentralises
the human subject and distributes agency across networks of human and non-human actors
(Haraway, 1991; Hayles, 1999; Braidotti, 2013). The Scratch Engine operationalises this
convergence by rendering group action not merely as an analytical abstraction, but as a real-
time, autonomous process that unfolds independently of continuous human intervention.
Transformations are enacted by the system itself, yet remain perceptually intelligible and
musically consequential. In this sense, the instrument can be understood as a cyborg
realisation of Lewinian transformational space: a performable environment in which musical
structure emerges through the interaction of formal group action, algorithmic execution,
and embodied listening. Musical agency is thus relocated from the composer or performer
alone to the dynamic field of relations enacted by the system, affirming both Lewin’s

relational theory of musical meaning and posthuman accounts of distributed creativity.

5. Parameter Containers and Instrument State

The instrument defines six persistent parameter containers, represented
geometrically as the vertices of a regular hexagon. Each container corresponds to a stable
control role within a synthesis or processing architecture, encompassing pitch, note length
or rhythmic interval, harmonicity or spectral density, pitch multiplier or register, resonant
filtering, and distortion or nonlinear processing. These roles remain spatially and
conceptually fixed throughout performance, while the numerical value occupying each role

changes over time.



A single interaction generates a six-element numerical vector, for example [54, 4, 32, 6, 40,
121]. Once generated, the values remain immutable; no stochastic or interpolative
processes modify them. All subsequent musical change arises exclusively through
permutation. This design prioritises structural transformation over parametric noise,

privileging constraint, invariance, and formal coherence.

6. The Dihedral Group Dg as Control Grammar

Structural transformation within the system is governed exclusively by the dihedral
group Ds, the group of symmetries of a regular hexagon. De consists of twelve elements, six
rotations and six reflections, each realised as a permutation acting on the six-element
ordered set. These permutations form the sole transformational vocabulary of the
instrument. Rotational permutations enact cyclic reassignment of parameter roles,
producing gradual and perceptually continuous shifts, while reflections introduce
inversional symmetries that often yield more contrastive reconfigurations. The finite and
closed nature of D¢ ensures that all transformations are known, repeatable, and structurally

related, producing formal unity even under rapid interaction.

7. Interface Representations: Hexagon and Matrix

The Scratch Engine employs two isomorphic interface representations: a geometric
hexagonal layout and a two-column, three-row matrix. In the hexagonal interface, the six
parameter containers are arranged spatially and labelled with fixed semantic descriptors
corresponding to their functional roles. The numerical values contained within these
positions circulate under the action of the dihedral group Ds, enabling transformations to be

perceived as structural reassignment rather than modification of material. The matrix



representation re-expresses the same group actions in a computationally tractable format.
Rotational symmetry corresponds to cyclic row or column shifts, while reflectional
symmetry manifests as matrix inversion operations. Each of the twelve dihedral symmetries
maps directly onto a unique matrix state, preserving adjacency relationships and ordering
constraints. This formal equivalence ensures that the matrix does not introduce an
additional organisational layer but functions as an alternative formalism for representing
the same transformational process. Importantly, the matrix serves as an intermediary
between the geometric interface and the Pure Data (Pd) environment, facilitating the
parsing, routing, and application of permutations in real time across diverse synthesis and

signal-processing domains.

8. Methods: Computational and Performative Operation

From a transformational perspective, the Scratch Engine aligns with Lewin’s
conception of musical structure as the action of groups upon musical objects (Lewin, 1987).
System states are represented as ordered lists of six numerical values, while musical
meaning emerges from the continuity and trajectory of transformations applied to these
lists over time. Within Pure Data, rotations are implemented as list shifts, reflections as
reversals combined with offsets, and matrix traversal as indexed access. This approach
allows permutations to be applied uniformly across all parameter domains, producing

continuous structural variation without modifying the underlying material values.

The system architecture is designed as an autonomous real-time musical

environment governed entirely by the action of De. Temporal behaviour is determined by



user-defined parameters, including global tempo via Ableton Link, temporal resolution for
permutation application (bar, half-bar, quarter-bar), and the formal duration of each state
vector, typically sixteen bars. Once initialised, the system advances automatically through

permutation space, producing continuous transitions between structural states. Performer
interaction is therefore configurational rather than moment-to-moment; musical agency is
exercised primarily through the selection of constraints and operational parameters, while

autonomous execution determines the unfolding of structure.

9. Sequencing as Structural Traversal

In its operational mode, the Scratch Engine functions as a live permutation
sequencer. Each activation advances the system to a new structural state while preserving
the underlying numerical vector. A cumulative log records all permutations applied during
performance, effectively producing a structural score that may be replayed, analysed, or
mapped onto other musical dimensions, including orchestration and spatialisation. During
performance, the system synchronises with networked tempo and generates a six-element
vector at the beginning of a cycle, which persists for a fixed formal duration. At each
subsequent temporal step, the system traverses the twelve dihedral symmetries,
interpolating between matrix states to produce continuous sonic transitions. Continuity is
maintained because energy and material are conserved, even as functional relationships are
repeatedly reconfigured. This approach operationalises serial principles as dynamic
structural traversal rather than static organisation, situating the system within a

performative, time-based paradigm.



10. Relation to Serialist and Algorithmic Practice

Historically, permutation has been central to serial and post-serial composition,
where ordering operations were applied to pitch-class sets, rhythms, and other musical
parameters (Babbitt, 1965; Morris, 1998). In such works, including Boulez’s Structures |
(1952) and Stockhausen’s Klavierstiick XI (1956), serial procedures were applied pre-
compositionally or offline, creating rigorously organised but fixed sequences. Similarly, early
electronic and post-serialist compositions by Subotnick, Xenakis, and Tenney explored
algorithmic transformation of parameters, often mediated through notation or fixed
computational frameworks, limiting the extent to which structure could emerge in real time

(Xenakis, 1971; Tenney, 1988).

The Scratch Engine diverges from this tradition by permuting not the values
themselves, but the functional roles to which values are assigned. Each six-element state
vector remains invariant, while dihedral transformations of the hexagonal interface reassign
parameter roles continuously. This distinction reconceptualises serialism as a live,
performative practice rather than a static organisational scheme, situating formal
transformations directly within the flow of musical time. Rotational and reflectional
permutations enact cyclic and inversional reassignments, producing perceptually coherent
but non-repetitive structural shifts that maintain material identity. In this sense, the system
operationalises transformational theory in real time, producing structured musical output
that is both audibly intelligible and formally rigorous without reliance on offline score
generation (Lewin, 1987). By embedding group-theoretic constraints directly into the
control architecture, the Scratch Engine realises an autonomous temporal framework in

which formal behavior unfolds independently of continuous performer input, exemplifying



the principles of autonomous technological performance systems (ATPS) (Rowe, 1993;
Zicarelli, 2002). Musical agency is distributed across the system: the performer defines high-
level constraints such as temporal resolution and formal duration, while structural

transformations occur algorithmically, continuously, and audibly.

By connecting the lineage of serialist and post-serialist practice to posthuman performance
perspectives, the Scratch Engine demonstrates that formal compositional operations can
operate as emergent, time-based phenomena. Whereas historical serialist software and
score-based practices emphasised human-mediated control, the present system embeds
serialist transformations into an autonomous, algorithmically governed environment. The
result is a hybridised mode of musical agency, in which dihedral symmetry, permutation,
and algorithmic execution converge to produce continuous melodic and rhythmic motion,
extending the conceptual and practical scope of contemporary serialist and post-serialist

composition (Haraway, 1991; Braidotti, 2013).

11 Symmetry, Serialism, and Group-Theoretic Lineages in Musical Composition

The relationship between symmetry and music is historically deep-rooted and
conceptually foundational. Since antiquity, music has been understood through symmetrical
and proportional frameworks, most notably in Pythagorean philosophy, where musical
intervals were first formalised as ratios of whole numbers (Pythagoras; Plato et al. [3.7]).
Fundamental intervals such as the octave (2:1), perfect fifth (3:2), and perfect fourth (4:3)
exemplify intrinsic numerical symmetry. These ratios are not merely mathematical
abstractions, but constitute the perceptual and structural basis of harmonic consonance,
embedding symmetry at the core of Western musical thought. In the twentieth century, the

conceptualisation of musical symmetry shifted from harmonic proportion to



transformational structure. Music theorists and composers including Babbitt [3.8] and Lewin
[3.9] demonstrated that core compositional operations—transposition, inversion, and
retrograde—can be rigorously formalised as group actions. Subsequent work by Fiore et al.
[3.10] explicitly identified these operations as elements of the dihedral group of order
twelve, corresponding to the symmetries of the regular 12-gon. Within this framework,
pitch-class space is treated not as a collection of static entities, but as a structured domain

upon which symmetrical transformations act.

Arnold Schoenberg’s twelve-tone serialism represents a pivotal moment in this
historical trajectory. While Schoenberg’s method abandons the harmonic symmetry of
Pythagorean ratios, it nonetheless embodies a strict transformational symmetry at the level
of pitch-class ordering. Inversion of the tone row produces a reflection about a central axis,
corresponding to vertical symmetry in geometric terms, while retrograde presents a
temporal reflection of the original ordering. Retrograde inversion combines these
operations, yielding composite reflective and rotational symmetries. However, Schoenberg’s
serial technique applies such formal constraints almost exclusively to pitch-class ordering,
leaving rhythmic structure, metre, and dynamics largely unconstrained and subject to

compositional discretion.

In the post-war period, this limitation was addressed through the emergence of total
serialism. Building upon Schoenberg’s pitch-centric model, composers and theorists
extended serial principles to encompass duration, articulation, metre, and dynamics.
Lewin’s transformational theory formalised this shift by foregrounding the operations
themselves rather than the musical objects upon which they act, framing composition as a

network of transformations rather than as a fixed array of ordered elements (Lewin [3.9]).



This reconceptualisation marked a decisive movement away from object-centred serialism
towards relational and process-oriented musical structures. From a mathematical
perspective, Schoenberg’s serial technique can be understood as a direct application of
permutation group theory, as formalised by Cauchy in the nineteenth century ([3.12]), and
specifically as an instantiation of dihedral group relations acting upon the twelve-tone scale
([3.13]). Parallel developments in more tonally oriented contexts further demonstrate the
breadth of group-theoretic thinking in composition. Hugo Riemann’s application of group
theory to harmonic function introduced symmetrical transformations within triads through
parallel, relative, and leading-tone exchanges. Fiore’s analysis of works by Bach, Pachelbel,
Wagner, and Ives demonstrates that such transpositions and inversions correspond to the
symmetries of the regular 12-gon when applied to triadic voice leading [3.10]. Cohn further
observes that these symmetries naturally extend to single-line voice-leading contexts, albeit
under parsimonious constraints that limit allowable transformations [3.14]. In all cases,

symmetry operates within clearly defined rule-based systems.

Despite the extensive historical repertoire available for symmetrical analysis, Babbitt
anticipated that the mathematical application of permutation and symmetry would
continue to offer “enormous scope for investigation for future generations of composers”
[3.8]. The present work responds directly to this proposition by relocating symmetrical
operations from pitch-class content to the permutation ordering of abstract data strings.
When the symmetric group S,,0f an n-gon is associatively mapped to the Scratch Engine’s
compositional software, a characteristic improvisatory musical flow emerges. This flow
exhibits formal behaviours analogous to exposition, development, transition, recapitulation,

cadential articulation, and anacrusis, effectively generating miniature sonata-like forms at



each iteration of permutation. A stylistically coherent body of digital audio compositions has
been produced and analytically examined to substantiate the claim that serialist principles—
and, by extension, symmetrical operations—can be applied not to pitch classes themselves,
but exclusively to the ordering and reordering of datasets. Through this approach, discrete
and exclusive symmetrical permutation states are identified, traversed, and rendered
audible. Musical fluency arises from the exposure of commutable relationships within the
data, articulated through associative and re-associative mapping rather than through direct
parametric control. In this sense, the Scratch Engine extends post-serial practice by
abstracting serial symmetry away from musical surface parameters and embedding it

instead within the structural logic of real-time computational systems.

12. Sonic Output and Serial Continuity

The sonic output of the Scratch Engine consists of continuous melodic and rhythmic
phrases characterised by rapid reordering, micro-variation, and gestural articulation. Rather
than developing material through thematic variation, coherence emerges through the

recontextualisation of immutable numerical vectors under changing functional roles.

This approach aligns conceptually with total serialism (Boulez, 1954; Babbitt, 1965), while
departing from historical implementations by realising serial organisation as an emergent,
performative process. Listeners perceive continuity because transformations are
experienced as motion through a constrained structural space, consistent with Lewin’s
theory of transformational perception (Lewin, 1987). Several extended recordings
demonstrate the system’s capacity to sustain uninterrupted lead-line trajectories over

prolonged durations, preserving structural consistency without post-hoc editing.



13. Computational and Design Implications

From a systems perspective, the Scratch Engine exemplifies a rigorous separation of
concerns between material generation, structural transformation, and presentation. Its
architecture ensures robust behaviour under rapid interaction and supports extension to
additional group actions or parameter cardinalities. Embedding explicit group-theoretic
constraints directly into a real-time interface demonstrates how formal mathematical
structures can coexist with performative immediacy. The system operationalises a form of
computational total serialism in which unified structural transformations are distributed
across heterogeneous musical parameters. This design supports Zicarelli’s observation that
productive musical systems derive richness from minimal but rigorous rules (Zicarelli, 2002),

illustrating how constraint and autonomy can facilitate expressive complexity.

14 Practical Applications in Contemporary Electronic and Generative Music

The Scratch Engine operates as a bridge between formal, mathematically rigorous
compositional models and contemporary electronic music workflows, particularly those
oriented towards live coding, generative systems, and real-time performance. Its core
functionality—permuting functional parameter roles rather than the values themselves—
resonates with the practices of contemporary producers who manipulate modular synth
environments, algorithmic patches, or DAW-based generative devices. Unlike conventional
sequencers or automation tracks in DAWSs, which often operate on pre-programmed, value-
specific timelines, the Scratch Engine identifies structural transformations as the primary

musical material.



In a typical usage scenario, the system is deployed within a 4/4 rhythmic framework,
producing continuous melodic and rhythmic content in a scratching-style lead line, at any
given tempo. These streams emerge from the autonomous traversal of twelve dihedral
symmetries applied to six-parameter vectors, resulting in non-repetitive yet perceptually
coherent material. This mode of operation aligns with contemporary generative workflows
in which musical structures are defined algorithmically and allowed to unfold over time, a

practice common in live coding sessions and modular electronic setups.

For electronic music producers and composers, the instrument functions both as a
sound design tool and a compositional engine. Its real-time permutation of parameters
enables complex, multi-dimensional modulation across pitch, rhythm, timbre, and spectral
processing simultaneously, reducing the cognitive load on the performer while preserving
expressive control. Coders benefit from the explicit mapping of group-theoretic actions onto
software objects, allowing integration with environments such as Max/MSP, Pure Data, or
SuperCollider, where list operations and array manipulations can be directly applied to
synthesis and processing routines. By embedding formal structures into live performance,
the Scratch Engine exemplifies a workflow in which autonomy, algorithmic rigor, and
performative immediacy coexist. Producers and composers can thus explore emergent
patterns and gestural improvisation within highly constrained yet dynamically evolving
musical spaces, creating material that is simultaneously formally intelligible and stylistically

relevant to contemporary electronic music idioms.



14.1 Integration with Contemporary Music Software and Workflows

The Scratch Engine complements and extends conventional electronic music software
environments by embedding structural permutation directly into real-time control
architectures. While DAWSs such as Ableton Live and Bitwig provide event sequencing,
automation, and clip-based modulation, they typically require manual programming of value
changes and offer limited mechanisms for the dynamic reassignment of parameter roles.
Similarly, modular environments like VCV Rack or hardware-based Eurorack systems allow
for generative modulation and algorithmic patching, but structural transformations are

generally hardwired or externally sequenced.

By contrast, the Scratch Engine situates dihedral permutation as an intrinsic,
performable process, capable of traversing a mathematically closed space of twelve
symmetrical transformations in real time. Its interface and matrix representations enable
immediate reconfiguration of multiple parameters—pitch, rhythm, timbre, spectral
processing—without necessitating pre-compositional intervention. In practice, the system
can be integrated alongside Ableton Link, Max/MSP, or Pure Data workflows, providing
continuous, autonomous structural variation that is compatible with clip-based timelines,

generative patches, and live coding sessions.

For contemporary producers, coders, and electronic musicians, this workflow allows
a hybrid mode of creation in which algorithmic rigor coexists with performative spontaneity.
Musical output retains the perceptual coherence of formal serial structures while remaining
flexible and responsive to user-defined temporal frameworks. Consequently, the Scratch

Engine functions as both a compositional engine and a performative instrument, bridging



the gap between formalist theory and practical, studio- or stage-based electronic music

production.

15. Adaptive and Associative Mapping

The Data Selfie Album [3.1] is the musical outcome of a software coded
environment for digital scratching. The lead solo instrument in this album is the primary
vehicle to explore and manifest melodic and rhythmic compositional fluency from data sets
and their permutational containerisation and reordering. . Video and audio Assets that chart
the development of the project can be accessed at the project’s homepage [3.2] In this
chapter the design and implementation of the Scratching Engine [3.3] in its vanilla form is
explained. Initially conceived as a live performance instrument employing gestural control
over audio parameters [3.4], the Scratch Engine was designed to accept input from a range
of MIDI-enabled environments. One such implementation utilised camera-based motion
tracking, in which six continuous data streams—corresponding to the three-dimensional
spatial coordinates (X, Y, Z) of the performer’s left and right hands—were captured and
mapped directly onto the six primary control parameters of the instrument’s synthesis

engine.

As a performance interface, the system affords a high degree of immediacy and
playability [3.5]. Melodic and rhythmic fluency can be achieved rapidly, even by
inexperienced users, due to the intuitive correspondence between bodily gesture and sonic
response. However, following extensive rehearsal and live performance use, it became
evident that sustained reliance on direct gestural mapping imposed significant limitations on

the exploration of the instrument’s full sonic and structural potential. In particular, the



phenomenon of muscular memory, ubiquitous among all instrumental performers that | am
acquainted with, was observed to constrain the diversity of gestural input and, by extension,
the range of sonic outcomes produced by the system. While direct mapping paradigms
theoretically permit an unrestricted mapping between gestural and sonic parameters, in
practice they remain bounded by the performer’s habitual motor behaviours, physical
constraints, and gestural imagination. Certain regions of the system’s potential sonic space
thus remain systematically unexplored, either because specific gestures are physically
unachievable or because they fall outside the performer’s embodied repertoire. As a result,
a substantial portion of the instrument’s latent expressive capacity remains dormant. In
response to these observations, the methodological framework adopted in this research
deliberately moves away from direct mapping strategies, instead foregrounding adaptive

and associative mapping as a foundational design principle.

The creative implications of adaptive mapping within the Scratch Engine emerged
initially through an unplanned configuration error. As is typical within software-based
instrument design, the performer—programmer retains full agency over the assignment of
input data streams to audio parameters at any given moment. In an early implementation of
the camera-based tracking system, parameters associated with pitch and rhythmic
articulation were intuitively assigned to the performer’s left hand, reflecting both

physiological handedness and a perceived dominance in gestural expressivity.

During a subsequent testing session, the camera system was inadvertently left in a
horizontally flipped configuration, analogous to the distinction between front- and rear-
facing camera modes in mobile devices. This inversion resulted in the reversal of left—right

hand tracking within the software environment. Although the performer’s physical gestures



remained unchanged, the polarity of the X-axis data streams was inverted prior to their
application within the audio engine. Consequently, the dominant gestural control was
transferred to the opposite hand, producing a distinct yet internally coherent mode of

interaction with the instrument.

From a systems perspective, this incident exemplifies associative mapping, in which
a single data stream is permitted to influence multiple parameters or to be reassigned
dynamically across different functional roles. Extending this principle, subsequent
development focused on systematically reconfiguring the associations between the six input
axes and the six audio parameters. Rather than privileging left- or right-handed dominance,
the system was restructured to explore the complete set of permutable associations
between input data and control roles. Through this process, a defined subset of dihedral
symmetrical and quasi-symmetrical permutations was embedded directly into the mapping
architecture of the Scratch Engine. These permutations were applied automatically at
metrically defined temporal resolutions—at the level of beats or rhythmic subdivisions—
resulting in a continuous reconfiguration of gestural-to-sonic relationships. The resulting
musical output exhibits extended, uninterrupted melodic and rhythmic phrases
characterised by structural coherence and internal variation, displaying formal properties
analogous to serial techniques and fugal procedures. Importantly, despite the absence of
explicit pitch-class manipulation, the emergent melodic trajectories produced by the system
can be subjected to conventional single-voice leading analysis [3.6], demonstrating that the
instrument’s output conforms to established analytical frameworks. The Data Selfie Album

recordings accompanying this study constitute creative artefacts generated through this



methodology, serving as empirical demonstrations of the Scratch Engine’s application of

permutation group theory to the real-time composition of extended solo lines.

16 The Scratch Engine

The Scratch Engine is a computer music programme designed in Puredata [3.15]. It
can be downloaded on this project’s open source Github repository [3.16]. The Scratch
Engine is locked to a tempo in a DAW via Ableton Link [3.17]. It comprises of a three parallel
oscillator wavetable with six parameters of audio transformation for each oscillator denoted

and referred to henceforth as A-F:

A) Pitch Frequency (not distinct pitch classes)

B) Note-length onset variance (modulus subdivisions of a 4/4 beat)

C) Harmonicity

D) Pitch Ramp Multiplier

E) Distortion

F) Resonance Filter

In the case of the camera tracked left and right-hand example given above, the 3 axes of

each hand are mapped directly as follows:



1 2 3| 4 5| 6|
LEFTHAND X LEFTHAND Y LEFTHAND Z| RIGHTHAND X RIGHTHAND Y| RIGHTHAND Z|

|'pd pitch/frequency| |'pd notelength variance| |T)d harmonicity [pd distortion| [pd ramp multiplier| |'pd resonance filter
Al B| q | | Fl

Fig 1 Left-handed dominancy

4 5 6 1 2| 3|

RIGHTHAND X RIGHTHAND Y RIGHTHAND Z LEFTHAND X LEFTHAND Y LEFTHAND Z|

[pd pitch/frequencyl I'pd notelength variance| |'pd harmonicity |T)d distortion| |'pd ramp multiplier| |'pd resonance filter
Al 8| q b El Fl

Fig 2 Right-handed dominancy

Infigure 1[123456]=[ABCDE], whilstin figure2[456123]=[ABCD E F] shows the

permutation of the camera flipped order.

In the first instance, Let the data-string [1 2 34 5 6) be considered as six containers.
(What data is held in each of those containers can, for now, be ignored.) In their re-ordering,

there are factorial 6 (6!) = 720 unique ways of rearranging the order of the six containers,



where order does matter, and replacements are not allowed. These are all the possible

permutations:

P(n,r)=?P(n,r)=?
P(n,r)=P(6,6)
=6!(6-6)!

=720 permutations

Permutations have many sub-groups. When considering the order of 6 strings, one
can represents their order as an n-gon. In the examples in figure 1 and 2 the permutation

can be viewed as a 6-gon:

(2
\’/
D

Fig 3 six pointed polygon

A[123456]permutationto[456 12 3]is a cyclic group permutation as it can be achieved

with three clockwise cycles, in other words a 180-degree transposition.



In cyclic notation 3([123456]) = [456123]

Cyclic permutations are considered abelian, that is to say, all elements commute. It is the
simplest group permutations of order 1. Given it is cyclic, the transposition can be achieved
through rotation. A linear visualisation of this permutation confirms that it belongs to the

symmetrical sub-groups (S6).

[123456]to[456123]

==

Original Rotation 180

O N b~ OO

— SE[ES ] e SEIES2 e Series3

e SE[ES/] emmm— SE[ESD e Series6

Fig 4 Braid trace graph 180 degree

There are 6 rotation permutations of a 6-gon, 0, 60, 120, 180, 240 and 300 degrees. These
permutations are transpositional. Additionally, there are 6 reflection symmetries of a 6-gon.

Reflections are also known as inversions.

These form the twelve symmetries in the dihedral sub-group (D6).



Symetrical dihedric permutations of a 6-gon

Original

Rotation 60 degrees (clockv

Rotation 120 degrees
Rotation 180 degrees
Rotation 240 degrees
Rotation 300 degrees
Reflection around 2-5
Reflection around 1-4
Reflection around 3-6
Flip A

Flip B

Flip C

Fig 5 Visualisation of symmetric pathways of D6

A

| cycle notation
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elements of D6 and their symmetrical pathways.

W R OOMRPMWOWNR VDO

NOAUOUNDSWNEROOVM
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| no change (e)
(123456)
(135)(246)
(14)(25)(36)
(153)(264)
(165432)
(13)(456)
(26) (35)
(15) (24)
(12)(36) (45)
(14)(23)(56)
(16)(25)(34)

A Linear mapping representation visualises the twelve symmetries, the commutability of the



Rotation 60 degrees (clockwise direction) Rotation 120 degrees Rotation 180 degrees Rotation 240degrees

—
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o

360 degree rotation
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Fig 6 Braid trace remapping graphs

Matrix Implementation

The same permutation groups can be achieved through matrix row and column
shifting. In Puredata, the Scratch Engine implements Zmoelnig et al’s IEM matrix library

[3.18], with which the data set of the 6 containers are placed into a 3X2 matrix.

Fig 7[1=Yellow, 2=Blue, 3=Black, 4=Pink, 5=Violet, 6=Orange]

By inverting and transposing elements’ position in a matrix (through applications of mtx_roll,
mtx_scroll, mtx_inverse [3.19]), group permutation theory can therefore be preserved and

qualified through matrix transformations in the following way:



Symetrical permutations of 3* 2 matrix

A B C D E F
Original Matrix 1 2 3 4 5 6
Swap rows 1 and 2 3 4 1 2 5 6
Swap rows 1 and 3 5 6 3 4 1 2
Swap rows 2 and 3 1 2 5 6 3 4
Swap rows 1 and 2, then 2 and 3 3 4 5 6 1 2
Swap rows 1 and 3, then 1 and 2 5 6 1 2 3 4
Swap columns 1 and 2 2 1 4 3 6 5
Swap rows 1 and 2, then columns 1 and 2 4 3 2 1 6 5
Swap rows 1 and 3, then columns 1 and 2 6 5 4 3 2 1
Swap rows 2 and 3, then columns 1 and 2 2 1 6 5 4 3
Swap rows 1 and 2, swap rows 2 and 3 4 3 6 5 2 1
Swap rows 1 and 3, swap rows 1 and 2 6 5 2 1 4 3

In linear representation, the 3x2 matrix order permutations can be seen to be almost

identical to the 12 symmetries of the 6-gon.

Swap rows 1and 2 Swap rows 1and 3 Swap rows 2 and 3 Swap rows 1and 2, then 2 and 3

Swap rows 1and 2, then columns 1and 2

Swan rows 1.and 3. then 1and 2 Swap columns 1.and 2
Vertical (Value) Axis Major Gridlines 7

Swap rows 1 and 2, swap rows 2 and 3 Swap rows 1and 3, swap rows 1and 2 Original Matrix

/

Fig 8 (Note: a 3x2 matrix is not square and doesn’t translate on the diagonal or anti-diagonal

axis which accounts for the two slight variational differences).

Twelve new 3x2 matrices are plotted from the twelve symmetries of the group permutation
sub-group, and it is these order permutations that are categorised in this project as the first

set of “data-selfies”.



Fig 9 Twelve permutation group matrices

[1=Yellow, 2=Blue, 3=Black, 4=Pink, 5=Violet, 6=0Orange]

Until now, the 6 elements of the data string have been referred to as containers. In midi
terms, they can be thought of as individual discrete controller numbers [1-6]. In the Scratch
Engine, the containers (sliders) contain data, specifically float or integers. In the following
example let 1 contain the value 44, 2 contain the value 50, 3 contain the value 53, 4 contain

the value 42, 5 contain the value 76, and 6 contain the value 15.

L Ll Ll

pd pitch/frequency| pd notelength variance] | pd harmonicity]| pd distortion| pd ramp multiplier| pd resonance filter
Al

Fig 10 Filling the containers with number data

Now that [123 45 6] =[44 5053 42 76 15], one can produce matrix group permutations

that reorder the string as follows:



original order: [44 5053 4276 15]

original transposed: [44 42 50 76 53 15]

rolled+2: [50 53 44 76 15 42]

rolled+2 transposed: [50 76 53 15 44 42]

scrolled+1: [42 76 15 44 50 53]

scrolled+1 transposed: [42 44 76 50 15 53]

scrolledandrolled+1: [15 42 76 53 44 50]

scrolled+1 rolled+1 transposed: [15 53 42 44 76 50]

scrolledandrolledrolled+2: [76 15 42 50 53 44]

scrolled+1 rolled+1 transposed: [76 50 15 53 42 44]

rolled+1: [53 44 50 15 42 76]

rolled+1 transposed: [53 15 44 42 50 76]

The Scratch Engine allows for the composer to choose which permutation order to apply to
the dataset being exposed to and associated with the fixed audio parameters AB CD E and
F. In the production of the Data Selfie Album, 6 numbers are generated at random (replacing
the data supplied by the hands) and populate the containers 1-6. This set of numbers live in
the system for a 16-bar cycle, before the containers are repopulated. At each bar, or beat

subdivision thereof, a new permutation order from the matrix set is selected thus reordering



the stream being fed into the audio Scratch Engine. Therefore, at every bar the exposed data

remains empirical, but is developed and redeveloped through pure pre-reordering.

A typical 16 (or 8) bar structure from the Data Selfie Album:

1)Block of six string data is generated. (Exposition)

2)The data string is containerised into a 3x2 matrix.

3)Commutable ordering group permutations are generated.

4)Association Mapping A-F. One permutation order is selected at each beat or strict

subdivision- (Development).

5)At the penultimate bar (for example at bar 15) a new block of data is generated (Cadenza

and New Exposition). The cycle begins again.

As input data into the Scratch Engine, the six random numbers and their containers
skip or hop every bar between the realational matrices, where their association and
reassociation to the audio parameters are exposed. By triggering the next set of random
numbers on the penultimate bar (7™ in an 8-bar cycle or 15th bar in a 16-bar cycle, the
system interprets the last bar not only as a cadenza to the musical phrases but also as an
exposition for the following set of phrases. These co-exist as a fluid and melodic anacrusis to

the next cycle.

Furthermore, this penultimate transition is ramped (smoothed over time) and thus can be
said to exist in latent spaces between permutation orders, momentarily for the duration of

the ramp time. In this way, using this track 110bpmDSSoloDemo



https://kilshaw.duckdns.org/THE_DATA_SELFIE/THE_DATA_SELFIE_ALBUM/index.html

(http://kilshaw.duckdns.org/THE DATA SELFIE/THE DATA SELFIE ALBUM/index.html) from

the Data Selfie Album as an example, each 16 bar cycle’s permutation score can be

visualised and a reordering trajectory can be plotted.


http://kilshaw.duckdns.org/THE_DATA_SELFIE/THE_DATA_SELFIE_ALBUM/index.html
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Fig.11 All 128 bar of 110bpmDSSoloDemo



http://82.16.164.31/THE_DATA_SELFIE/THE_DATA_SELFIE_ALBUM/110bpmDSSoloDemo.mp3

The twelve matrix symmetries discussed above are extended through diagonal
matrix (mtx_diag) permutations to create six additional quasi-symmetrical permutations,
producing 18 permutation variations for associative mappings. It is from these specific

matrices that the Data Selfie Album is composed.

Fig 12 The eighteen quasi symetrical matrix containerised permutations.

16.1 Melodic and Rhythmic Analysis

As well as the Scratch Engine’s distinctive sound of the audio synthesis, the
environment is programmed to generate midi note outs. Therefore, the outputted rhythm
and pitches from the Scratch Engine can not only be re-voiced in DAWSs and other
environments but can be further analysed by a midi translation of onset rhythms, silences or
rests and pitches. In this way one can understand the observable underlying structure and
phrase patterns generated by the system. For this analysis, as well as visualising the melodic
contours, it is also helpful to employ Salzer’s structural hearing approach [3.20], to
aesthetically ascertain the patterned conjuncts between notes as the system constructs
linear melodic phrases. From the output, one observes some clear principles of voice leading
theory, namely that of smoothness in stepwise motion, the lead voice is independent and

balanced. Once a fundamental line is established, initial ascents can begin the elaboration.



Neighbour notes or passing notes link the phrased elements through decoration between
the spans of top and bottom notes. A linear fluency in the melodic arc is observed.
Occasional interruptions are allowed and form distinct sub motifs of the fundamental line

being developed.

1) WAIA SELFIE LNan | |2) UAIA SELFIE LNaN | (%) UAIA SELFIE LNAN | (%) WAIA SELFIE LNan [ |2) UAIA SELFIE LNAN | () WAIA SELFIE LNan | (2) UAIA SELFIE LNan [ |2 YAIA SELFIE LNan | L«

Fig 13 : https.//www.youtube.com/watch?v=z3fawBnic3w

(8 cycles of the Scratch Engine 100 bpm)

Understanding this structurally, in terms of the group permutation matrix actions,
each launch of a set of new random numbers instigates a cadenza and an exposition at the
same time, identified figure n below in red. It resolves the previous cycle and introduces or
exposes the next prime data stream. It can be heard to act as an anacrusis to the new prime
data stream highlighted in blue. The prime data stream as an exposition instigates the
fundamental line, where a new musical idea and the subsequent elaborations are developed
as the system plays out the order permutation parameters, identified in green. These
elaborations are littered with phrases that are clearly related to the prime data’s
fundamental and is when the phrases are melodically and rhythmically at their most fluent.
At the penultimate bar the cycle returns to red, to jointly provide a cadenza and a new
exposition and distinctively provides the anacrusis into the next new musical idea, and so

on.


https://www.youtube.com/watch?v=z3fawBnic3w
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Fig 14 Score : 9m.41s -11m.30s https.//www.youtube.com/watch?v=2U42qyU4Mh0&t=2s

The Scratch Engine will generate the lead instrument solo ad nauseum. [21] By
generating a new set of six random numbers to populate the six containers every 16 bars
(rather than the performer’s input data) the instrument can play in automatic mode, ever
evolving, but always congruently fluid through its internal logic. There is a spontaneous and

expressive fluidity between beats, between bars and between larger scale cycles.

Fig 16 left (single bar: motion two melodic ascents and two descents with transposition).

Fig 17 right (single bar: mirrored rhythm over melodic arc(green)).
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https://www.youtube.com/watch?v=2U42qyU4Mh0&t=2s

Fig 18 left(single bar: rests as “ghost” downbeats inside triplet cells).

Fig 19 right(single bar: fluid rhythmn modulation from triplets to straight on beat within a

bar).

The scratching patterns outputted by the software have direct audible comparisons
to established DJ scratch patterns and techniques, with particular reference to the Scratching
Pattern Taxonomy laid out by DJ QBert [3.22]. These traditionally turntablist techniques
(chirps, squiggles, orbits, baby scratches, transformers, autobahns, flares, tears, multi click
crabbing) are all recognisably manifest in the Data Selfie Album, particularly in

130bpmSoupGlitchDemo, albeit with its own distinctive prosody.

The Scratch Engine’s midi output capabilities allow for parallel instrumental
comping and scaled symmetrical noodling. In this revoiced example, [3.23] a midi Smokey-
Clav comps over an oblique single chord loop, in a melodically harmonically congruent way.
Pentatonic scaling in this example [3.24] allows the voice leading muted guitar to relate
harmonically to the chord progressions in the track. Furthermore, when midi onsets are
applied to midi gating techniques, some interesting symmetrical interjections and
embellishments become an additional rhythmic feature to the production of the track.[3.25]

Stylistic and revoiced experiments exist on the project’s homepage.

16.2 Evaluation

The Data Selfie Album as an artefact, is the audio manifestation of applying
dihedral group permutation theory to associative mapping and rhythmic remapping. In this

way, containerising the elements of data strings is a pre-composition and pre-production


http://kilshaw.duckdns.org/THE_DATA_SELFIE/THE_DATA_SELFIE_ALBUM/index.html

technique. Representationally, the six audio parameters in these given examples (A-F) have
dictated the size of the n-gon, and as a corelative, the size of the matrices. It stands that the
methodology is scalable. By letting the total number of target end-chain audio
transformation parameters dictate the size of the n-gon, (and therefore it’s possible
symmetric and quasi-symmetric permutations), a containerised approach to permutation
mapping will stand. By example, an associative mapping methodology could extend to an

instance of an 8 element (parameter) granular synthesiser :
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Fig 20 from Grainsamplerfx.pd (Brinkmann’s Library)

Where, as containers, A-H could be mapped from the 8 rotations and 8 reflections of D8.



SYMMETRICAL GROUP PERMUTATIONS D8 A B C D E F G H
ORIGINAL 1 2 3 4 5 6 7 8
Rotation by 45° 8 1 2 3 5 5 6 7
Rotation by 90° 7 8 1 2 3 4 5 6
Rotation by 135° 6 7 8 1 2 3 4 5
Rotation by 180°: 5 6 7 8 1 2 3 4
Rotation by 225° 4 5 6 7 8 1 2 3
Rotation by 270 3 4 5 6 7 8 1 2
Rotation by 315° 2 3 4 5 6 7 8 1
Reflection vertices 1 and 5: 1 8 7 6 5 4 3 2
Reflection vertices 2 and 6: 7 2 1 8 5 6 3 4
Reflection vertices 3 and 7: 5 4 3 2 1 8 7 6
Reflection vertices 4 and 8: 3 4 5 6 7 8 1 2
Reflection midpoints sides 1-2 and 5-6: 2 1 8 7 6 5 4 3
Reflection midpoints sides 2-3 and 6-7: 8 7 6 5 4 3 2 1
Reflection midpoints sides 3-4 and 7-8: 6 5 4 3 2 1 8 7
Reflection midpoints sides 4-5 and 8-1: 4 3 2 1 9 7 6 5
8 8

8 8
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Fig 21 Example (Dihedral symmetries of an 8-gon) Proposed possible Octo-phonic speaker

array mapping



This serialist mapping methodology is extendable across many computer music
domains, compositional sound worlds, genres and data applications and is intended not just
as a software instrument presented above, but as an accurate and efficient creative
framework for data-composers and artists. An extended variety of stylistic genres with lead

line soloing derived from the Scratch Engine are presented here:

http://kilshaw.duckdns.org/prosodic development/indexb.html

17. Creative Outcomes: Album as Practice-Based Evidence

17.1 The Album as a Formal Outcome of the System

The album produced as part of this research constitutes a primary creative outcome
and functions as material evidence of the Scratch Engine’s operational and theoretical
claims. Rather than being conceived as a collection of discrete compositions authored in the
conventional sense, the album documents the behaviour of the system operating
autonomously under defined constraints. Each track captures a sustained traversal through
the system’s permutation space, rendering audible the structural processes described in
Chapters 6—-11. In this context, the album should be understood not as a representational
artefact that illustrates prior compositional decisions, but as a performative trace of an
internally governed transformational process. Once configured, the Scratch Engine
generates numerical state vectors and applies dihedral permutations at predefined
temporal resolutions without continuous human intervention. The recorded output
therefore reflects the system’s capacity to maintain formal coherence over extended

durations through the conservation of material and the systematic reassignment of


http://kilshaw.duckdns.org/prosodic_development/indexb.html

functional roles. This framing aligns with practice-based research methodologies in which
creative artefacts operate as sites of knowledge production rather than objects of aesthetic
validation. The album functions as a temporal exposition of the system’s structural logic,
making audible the real-time execution of dihedral group action upon invariant material. In
this sense, the tracks may be read as structural studies, each articulating a particular
pathway through the twelve symmetries of the hexagon while preserving a consistent
internal identity. The album thus serves as an empirical manifestation of the system’s formal
design, confirming that the theoretical principles outlined earlier in this thesis are not

merely abstract, but operational, audible, and sustainable in practice.

17.2 Listening as Perception of Transformation

Listening to the album invites transformation as the primary perceptual dimension,
rather than thematic development or motivic variation. Because the underlying numerical
material remains invariant for extended formal durations, change is experienced not as the
introduction of new content, but as the reconfiguration of relationships between stable
elements. This mode of listening aligns with Lewin’s conception of musical meaning as

emerging from transformational paths rather than from fixed musical objects (Lewin, 1987).

The continuity of the sonic output is maintained through conservation: energy, density, and
material identity persist even as functional roles are repeatedly reassigned. As a result,
musical motion is perceived as circulation within a constrained space rather than
progression toward a goal. This produces a listening experience characterised by flow
without teleology, in which structural change is continuous yet non-narrative. The listener

encounters permutation as motion, symmetry as stability, and variation as relational



displacement rather than replacement. Such perceptual conditions resonate with post-serial
and transformational listening practices, in which attention is directed toward processes,
mappings, and structural affordances rather than surface-level events. The album therefore
invites a mode of engagement that is analytical as much as experiential, encouraging
listeners to apprehend structure through repetition with difference. Importantly, perceptual
intelligibility is not achieved through simplification, but through the rigorous restriction of
transformational possibilities. The closed nature of the dihedral group ensures that all
perceived change remains structurally related, reinforcing coherence even under rapid

permutation.

17.3 Aesthetic Character and Structural Fluency

While the album is not evaluated in terms of aesthetic preference, its sonic character
can be described in structural and operational terms. The output consists of continuous,
uninterrupted streams of melodic and rhythmic material articulated within a stable metric
framework, typically in common time. This temporal regularity functions as a stabilising grid
against which structural transformation is rendered perceptually legible, allowing rapid
reconfiguration of functional roles without disorienting the listener. The gestural quality of
the music, which can be observed to be scratching or turntable-like in character, emerges
not from direct physical manipulation but from the systematic reassignment of control
parameters. Articulation, contour, and rhythmic emphasis are products of permutation
rather than expressive gesture, resulting in phrasing that appears fluid and performative
despite its autonomous generation. This apparent paradox underscores the system’s
capacity to produce musically coherent output without reliance on embodied virtuosity.

Crucially, the album demonstrates that structural rigor and sonic fluency are not mutually



exclusive. Extended passages sustain continuity without stasis, and contrast without
rupture, confirming that permutation-based systems can support long-form musical
trajectories. Rather than developing material through thematic elaboration, the music
maintains interest through the ongoing recontextualisation of invariant elements. In doing
so, the album exemplifies a form of operational serialism in which structure is not imposed

retrospectively, but unfolds dynamically as an audible, time-based process.

18 Limitations and Future Work

The Scratch Engine is intentionally framed as a constrained formal system, grounded in
dihedral symmetry, autonomous operation, and the permutation of functional roles rather
than musical values. While these constraints underpin the system’s conceptual coherence
and aesthetic focus (Chapters 3-5), they also define the boundaries of the present research.
This chapter articulates those limitations explicitly and outlines directions for future work

that extend, rather than contradict, the theoretical position established earlier.

18.1 Serialism Beyond Pitch: Conceptual Boundaries

As discussed in Chapter 8 (Relation to Serialist and Algorithmic Practice), historical serialism
emerged primarily as a response to the perceived exhaustion of tonal pitch organisation,
with pitch-class ordering functioning as its central structural concern (Schoenberg, 1923;
Babbitt, 1965). By contrast, the Scratch Engine abstracts serial logic away from pitch classes
and applies it to the permutation of parameter roles (Chapters 2 and 6). This abstraction
constitutes a conceptual limitation insofar as it departs from the historical specificity of

serialist practice. While transformational theory explicitly permits such abstraction by



focusing on the action of groups rather than the musical objects they transform (Lewin,
1987; see Chapter 4.4), critics may argue that the system risks generalising serialism into a
neutral permutation logic. Future research could address this by hybridising role-based
permutation with pitch-class serial constraints, allowing historically grounded serial

techniques and post-serial abstraction to coexist within a single system.

18.2 Symmetry, Determinism, and Expressive Constraint

The exclusive reliance on the dihedral group Ds, detailed in Chapter 6, provides
mathematical closure and perceptual legibility but also introduces the risk of expressive
determinism. Post-serial composers such as Ligeti and Lachenmann have explicitly critiqued
the aesthetic consequences of rigid symmetrical systems, arguing that excessive regularity
can suppress perceptual tension and formal rupture (Ligeti, 1968; Lachenmann, 1993).
Although the Scratch Engine mitigates this risk through temporal subdivision and continuous
interpolation (Chapter 8.4), its transformational vocabulary remains finite and closed.
Future work could explore controlled symmetry-breaking strategies, such as dynamic group
switching, probabilistic deformation of transformations, or multi-group interaction,

extending the formal language while preserving the system’s structural clarity.

18.3 Autonomy and Compositional Authorship

As established in Chapters 1 and 4, the Scratch Engine is conceived as an Autonomous
Technological Performance System (ATPS), operating independently once initial constraints
are defined (Rowe, 1993). This design emphasises structural autonomy over performer
responsiveness, deliberately minimising moment-to-moment human intervention (Chapter

8.4). A limitation of this approach is that autonomy remains procedurally bounded. While



the system autonomously traverses permutation space, it does not generate or revise its
own transformational grammar. Future research could investigate meta-transformational
systems capable of modifying their governing group structures over time, aligning more

closely with adaptive and evolutionary models of musical agency (Miranda, 2009).

18.4 Performer Agency and Embodiment

The reduction of direct gestural control, discussed in Chapters 4.2 and 13
(Methodology), represents a deliberate challenge to performer-centric models of digital
musical instruments (Wanderley & Battier, 2000). While this aligns with posthuman and
cyborg-centric perspectives on distributed agency (Haraway, 1991; Hayles, 1999; see
Chapter 4.3), it may be perceived as limiting embodied expressivity. This limitation is
conceptual rather than technical. Future work could explore layered agency models in which
human gesture modulates higher-order system parameters—such as permutation density or
temporal resolution—without reintroducing the gestural determinism explicitly rejected in

the current methodology (Chapter 13.1).

18.5 Stylistic and Cultural Specificity

Although formally general, the system’s musical outputs are stylistically situated
within Western metric frameworks, particularly 4/4 time, and draw heavily on scratching
practices and electronic improvisation (Chapter 11). This stylistic anchoring limits the
generalisability of the system across broader cultural and musical contexts. Future research
could apply the Scratch Engine to non-metric temporal structures, alternative tuning
systems, or non-Western rhythmic frameworks, testing whether dihedral permutation

retains perceptual coherence beyond its current idiomatic domain (Born, 2005).



18.6 Analytical and Perceptual Validation

While Chapters 8 and 11 demonstrate structural coherence through
transformational and voice-leading analysis (Lewin, 1987; Cohn, 2012), the present research
does not include empirical listener studies. As a result, claims regarding perceptual
intelligibility remain analytically rather than empirically grounded. Future work could
incorporate listener-based evaluations, psychoacoustic testing, or comparative studies with
other generative systems to assess how dihedral permutation is perceived over extended

durations.

These limitations define the scope of a deliberately focused intervention rather than
deficiencies in execution. By constraining itself to a closed symmetry group, autonomous
temporal unfolding, and abstract parameter roles, the Scratch Engine articulates a precise
theoretical position within post-serial, transformational, and posthuman music discourse
(Chapters 3—4). Future work will extend this position outward, testing the resilience of its

principles under expanded musical, cultural, and computational conditions.

19. Conclusion

The Scratch Engine represents a performable musical instrument in which dihedral
symmetry, serial logic, and real-time computation converge to produce a coherent
autonomous system. By embedding the full action of the dihedral group De directly into the
control architecture, the system reconceptualises permutation as a continuous, audible, and

manipulable process rather than a pre-compositional abstraction. Its principal contribution



lies in reconfiguring serial principles for real-time musical practice. By permuting functional
roles rather than the numerical values themselves, the system enables structural variation
while preserving material identity, producing a form of operational total serialism that
unfolds dynamically. Serial organisation is thus retained at the level of relational structure

while liberated from static matrices or score-based realisation.

Operating autonomously once configured, the Scratch Engine challenges
conventional models of interaction in digital musical instruments. Musical form emerges
from the execution of a constrained transformational grammar rather than continuous
performer—system dialogue. Performer agency is exercised through system design and
configuration, whereas autonomous execution governs temporal unfolding, foregrounding
structure itself as a musical phenomenon in accordance with transformational theory
(Lewin, 1987) and Xenakis’ conception of composition as navigation through formal spaces
(Xenakis, 1971). Artistically, the instrument produces uninterrupted streams of melodic and
rhythmic material characterised by rapid re-contextualisation rather than thematic
development. Extended performances demonstrate its capacity to sustain long-form
musical trajectories without external segmentation or post-hoc editing. More broadly, the
system provides a model for how abstract mathematical structures can be rendered
perceptually explicit and musically productive within real-time systems, illustrating the

convergence of formal rigour, performative immediacy, and posthuman musical agency.
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